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Angular behavior of synchrotron radiation harmonics
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The detailed analysis of angular dependence of the synchrotron radi8®tis presented. Angular distri-

butions of linear and circular polarization integrated over all harmonics, well known for relativistic electron
energies, are extended to include radiation from electrons that are not fully relativistic. In particular, we analyze
the angular dependence of the integral SR intensity and peculiarities of the angular dependence of the first
harmonics SR. Studying spectral SR intensities, we have discovered their unexpected angular behavior, com-
pletely different from that of the integral SR intensity; namely, for any given synchrotron frequency, maxima

of the spectral SR intensities recede from the orbit plane with increasing particle energy. Thus, in contrast with
the integral SR intensity, the spectral ones have the tendency to deconcentrate themselves on the orbit plane.
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l. INTRODUCTION <1,E=my?) and the relativistic limits(8~ 1,E>myc?),
- . are of particular interest. In the nonrelativistic case, only the
At present the theory of synchrotron radiati@R) is well ) ; . . . .’ .

b Y O Sy @GR It||rst harmonicsw, =w is effectively emitted. The SR intensity

developed and its predictions are in good agreement wit : in the directi fth ic field. In th
experiment. General expressions for the spectral SR intensify?S @ maximum in the direction of the magnetic field. In the

(SR intensity for a fixed radiation frequenoyere obtained 'elativistic case, the integral SR intensigpectral SR inten-
in the framework of classical electrodynamics as far back a§ity Summed over the spectryiis concentrated in the orbital
in Ref.[1], and since that time were represented in numerouBlane within a small interval §~1/y<1 of the angley. We
books(e.g., Ref[2], p. 20; Ref.[3], Sec. 10; Ref[4], p. 31 have chosem to be measured from the direction of the mag-

and textbookge.qg., Ref[5], p. 676; Refs[6], p. 296;[7,9,  Netic guide field which is normal to the orbital plane. Thus,

p. 22). as the electron energy increases, the integral SR intensity
We recall that the SR is created by charged particlesi€nds to be concentrated in the orbit plane. Any polarization

which are moving with velocities along circles of radiu® ~ component of the integral SR intensity has the same behav-

in a uniform magnetic field ior. These results were first derived in the framework of clas-
sical theory. Consideration in the framework of quantum
BE myc? —— v theory does not change essentially results of the classical
R=""= V-1 p=, analysis, since quantum corrections are sy
eH eH c ySIS, q :

In this work we examine the angular dependence of po-
larization of the spectral and integral intensities of synchro-
y=(1-p) 2= iz >1. (1) tron radiation. Some years ago one of the aythors, V.G.B,,
myC collaborated with the authors of RgR] on their Chap. 1,
where the present EqEl9) and (14) appeared. These equa-
tions give, respectively, the angular distance out of the or-
bital plane of the maximum emission of the component of
synchrotron radiation that is linearly polarized orthogonal to
the orbital plane, and the angular distances from the orbital
plane of the two components of circularly polarized radia-
tion, in the relativistic limit wheres, the electron speed nor-
malized to the speed of light, approaches the value of unity.
In the present work this behavior is described for valueg of
*Electronic address: gitman@fma.if.usp.br intermediate between zero and unity. These results are sig-

HereE is the particle energy is the particle charge, and,
the rest mass of the particle. The radiation frequeneigs
=vwgy,v=1,2,--, are multiples of the synchrotron fre-
quencywgy=ceH/E. The spectral SR intensit{SR intensity
for a fixed radiation frequengyhas a maximum for harmon-
ics with »~ 9. Two limiting cases, the nonrelativistig3
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nificant for characterizing radiation by keV electrons in hotknown[see, e.g., Ref2], p. 35, Eqs(6.6) and(6.7)].

magnetized plasmas, for example. The sum overm is just the sum over the spectrum, such
In Sec. Il we analyze in detail angular dependence of theéhat the expressions inside the sum represent spectral distri-

integral SR intensity. In Sec. lll we study peculiarities of the butions. The function$;(v, 8; 6) have the form

angular dependence of the first harmonics SR. Studying 2 ; 5

spectral SR intensitiegsee Sec. I\, we have discovered o= Y|y, = COS _ -

their unexpected angular behavior, completely different from fea(v.5:0)= 2 1@ B sin HJV(Z) . Z=vBsind,

that of the integral SR intensity; namely, one can see that for

any given synchrotron frequency, maxima of the spectral SR 2 co2 0
intensities recede from the orbit plane with increasing par-  f,(v,8;60) = 12J/%2), fa(»,B;0) = 2—.\]3(2). (3)
ticle energy. There exist limiting anglegat 8— 1) for the B sir? ¢

macxcl)rr?t?a:tlrvvcﬂ dtﬁgei?]?eg?a}thS)i/th(;hr:;i;ontr:c(raeg;ggtiil zzg?ere J,(x) are Bessel functions of integer indices. The fol-
’ owing simple properties hold true:

have the tendency to deconcentrate themselves on the orbit 9 pie prop

plane. The analysis is done in the framework of classical f(v,B;0) =f(v,B;m—6), k=0,2,3;

theory, but as was already mentioned above, quantum correc-

tions cannot change the results essentially. Below, some ba-

sic expressiongknown from the above cited sourgeare fa(v.5:6) = fa(v. Bi7 = 0). (4)

given; they are necessary for the presentation of the abovenys, it is enough to study the functiorfg(v,3;6), k

results. . _ =0,2,3, at theinterval 0<@=</2 only, and between the
Using the notation of Ref.2], we denote by index 1 the fynctionsf,, it is enough to study, only.

direction of propagation of the radiated photon, or the direc-  Exact analytic expressions for the functioRg(3, ), k

tion of the Poynting vector in the classical case. Indices 2'3:0,2,3,have the following form[2-9:

denote mutually orthogonal axes lying in a plane orthogonal

to the propagation direction. Extremely relativistic electrons 7-3¢ - 1

radiate synchrotron radiation mainly close to the direction of Fa(B,0) = 16852’ e=1-p%sin’s, 72 se<l,

their instantaneous orbital velocity, so that the 3-axis can be

chosen so as nearly to coincide with the direction of the

magnetic guide field, traditionally called the-direction, Fa(B,6) = (Ye-1)(5-¢) (5)
while the 2-axis will nearly coincide with the direction of S 16(y2 - 1)e"?’

centripetal acceleration, er-direction. Circular polarization

vectors will lie along the positive and negative 1-axes, while (3-4/2)82+6(2/2-1)e -5
transverse linear polarization components lie along the 2- Fo(B,0) = 1672 1)s72

and 3-axes. In the SR theory one introduces polarization
componentsW;, i=0,%1,2,3 of theintegral SR intensity. gypressions for the functiorfs,; can be found in the form
HereW,, are the integral SR intensities of the rightl) and
the left (—1) circular polarization components, respectively,
whereasW, andWj; are the so called and 7 linear polar-
ization components. The total integral SR intensity is
defined asy=W;+W_;=W,+Ws,. In the framework of the
classical theory of SR one can find

cept_eH*p(1-p)
R m(z)cg ' It remains the case that no closed analytic expression for
the functionW(x) has been found. We have therefore re-
- % sorted to numerical computation where it occurs in our work.
(B :f F.(B,0)sin 6do, F.(B,0)= > f.(v,8;0), One can find by taking first and second derivatives that for
0 =1 any fixed 8 all the functionsF;(3, 6) have an extremum at
6=0. Moreover, the extremal values of these functions do

fo(»,8;0) = f_1(v,B; 6) + f1(v, B; 6) = f(v,B;0) + f3(v,3;6). ot depend orB,

) F_1(8,0) = 0,2Fo(,0) = 2F4(B,0)

Here 6 is the angle between the axis and the radiation = 4F,(B,0) = 4F4(B,0) = 1. (7)
direction. The particle orbit is placed in the plazwe0, which

corresponds tog=m/2. In some works a different set of The pointé=/2 provides an extremum for the functioRg
angles is used for the SR description. In particular,zbgis ~ k=0,2,3only. Here we have

is selected to coincide with the direction of the particle’s 1
instantaneous velocity. The relation between the latter refer- _ _ _ = _
ence frame and the one used in the present paper is well FolBm12) = Fol B, m12) = 2P (B, mI2) = 16)/3(73/2 3,

F.1(8,0) = %FO(,B, 0) + (B sin #)cos b,

243 2w, ®)

A\ =
00 2xdx; 5

W =Vo®i(B), Vo=
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Fy(B,7/2) = 0. (8)
Therefore, forF; the pointd=7/2 is an absolute minimum.
For any fixed 8 the functionF,(3,6) is a monotonically
increasing function ofd on the interval G< < /2. Thus,
0#=0 is an absolute minimum ané=/2 is an absolute
maximum of this function. The maximum of the functién
increases ak&® with increasing particle energs.

IIl. ANGULAR DEPENDENCE OF INTEGRAL
SR INTENSITY

It is known that in the nonrelativistic cagg8@<1) the
point #=0 is a maximum for the functionsy,F,, andFs. In
the ultrarelativistic cas€y>1) the maxima of these func-
tions are shifted into the direction of the poifwt /2. How-

ever the behavior of these maxima in the region of varying .

normalized spee@ and normalized energy of the radiating
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FIG. 1. The maximum pointsﬁf)m)(,B) of integral intensityF
plotted against normalized electron velocily

0, B=gY
o (B) =1 6(B), B <pB<pBY (12)
w2, BP<=pB<1.

Turning to the integral intensity of the circular polariza-
tion, we find that for any giver e (Bgl),l), the functionF;

particle has not been analyzed before in detail. We will givehas its maximum at the poit= 6,(3), 0< 61(B) < 7/2. De-

such an analysis in what follows.

noting via 0(1”‘)(,8) all the maximum points of;, we may

For the particle energy less than the lower critical value write

y=<vy, (B<pB), where

YW =\7/6~1.0801, g =1,7~0.378, (9

the integral intensity~, and circularly polarized components

F, are monotonically decreasing functions &f(F, on the
interval O0< #< /2 andF, on the interval G< < ). We

recall that the functioriy characterizes the integral intensity

< g
eg_m)(ﬁ) :{ ’ 18(1) IBO
al(ﬂ)v :80 <18< 1.
At the moment, there is no analytical expression 6i3)
similar to Eq.(11) for 65(B). However, one can see that the
function 6;(B) is a monotonically increasing function ¢f
e[,Bgl),l]. In the limit of 8 approaching 1 we recover the

(13

and the functionF, characterizes the circularly polarized @Symptotic form that was given in Re2],

component of the intensity, see E@®). Thus, atf=0 these

functions have an absolute maximum. The integral intensity

Fo and circularly polarized componenis have their abso-
lute minima at 6==/2 and 6=, respectively. Besides,

F.(B8,m)=0. In the particle energy interval between the two

critical valuesyy’ < y<y%, (B <B<BY), where

i~
/3+3y2
@ =27 1 1949,

2 -~
\5(16-2 ~ 05474,

the points #=0,7/2 are minima forFy, and the pointd

=60(B),

(2) —

0 = (10

672(1 - 3y7) + 2/2V15(15y* — 222 + 9)

SifF0o(f) = 347 -3)(7-1) |

0< 6y(B) < ml2 (11)

provides a maximum foF,. For energies greater than the

upper critical valuey82)< Y, (,882)<,8< 1), the functionF,

has an absolute maximum at the poéist/2.
Denoting viaegm)(,B) all the maximum points of,, we
summarize as followsgsee Fig. 1

01(,8) =~ 7/2 _a.ll’)/, ﬂ-’ 1, (14)

wherea; =0.2672 is aroot of the equatiorisee Ref[2])

Smay(5 + 129)\3 + 64532 - 1)\1+a2=0. (15

When we generalize to the region whees increasing to-
wards unity, we get the plot of the functicﬂﬁ“)(ﬁ) as shown

in Fig. 2. In the case of linear polarization, where the nor-
malized velocityB and energy of the radiating electrorare
less than the critical valug8; and vy;, respectively, where

2 \/§~11678 (16)
V15 1 ’

B3=——~ 05164, y3=

the integral intensity; is a monotonically decreasing on the
interval 0< < =/2 function. The point¥=0 provides the
absolute maximum for this function.

B 0.4 0.5 0.6 0.7 0.8 0.9 1

FIG. 2. The maximum pointsﬂ(lm)(ﬁ) of circularly polarized
componentd=, plotted against normalized electron velociy
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FIG. 3. The maximum pointsﬁ(am)(ﬁ) of = linear polarization _
component~; plotted against normalized electron velocgy 00 /4 Py [} F 3

For values of normalized velocitg greater than the criti- FIG. 4. The spectral intensity functiorfg=f(1,8=0;6) and
cal value 3, that is, for >8> B3, (y> vs), the pointsé fk=(1,B8=1,6) at two extremal values of electron velocitg=0

=0 and 6= 6,(B) provide the minimum and the maximum, and B=1) plotted against polar angle of emissi@nradiang, for
respectively, for the integral intensifs, the different polarization componerks0,1,2,3 aharmonic hum-

berv=1.

V5(125y* = 3497+ 5) = 19y° -5

sin’65(B) = - , 2
57~ f+1(1,8:6) = %[31(2) + &;931(2)] , z=psind,
0< 65(B) < /2. (17)
Denoting the angular position of all the maxima of the func- f(1,8,0)=32(2), f3(1,8;0)= LSZHJ'f(Z)_ (20)
tion F5 by 0(3”‘)(,8) (Fig. 3), we may write z
0, < In the nonrelativistic case3=0) we get
65" () ={ p=p (18)
03(B), Bs<pB<1.

1 1

f-1(1,0;0)==(1 F cosh)? f,(1,0;6)==,

For B—1 the following asymptotic expression previously 8 4
given in Ref.[2] holds true:

cog 0
1 /2 f3(1,00) = ——. (21)
o ~ w2 -~ \/; . (19) ’ 4
Y . . .
Thus, in this case, the radiation componémsandW; peak
at 6=0,7, whereas\V, does not depend o# at all. Further
1. ANGULAR DEPENDENCE OF SPECTRAL analyzing the expressioli20), one can see that the functions
SR INTENSITY f(1,8;60), k=0,1,2,3,peak atf=0 for any 8 (including

. . B—1). Thus, the corresponding radiation componeWis
The behavior of some spectral components of SR 'menére maximal ap=0 for any 3.

sity h?s _been studu_ad_ n the past by _others both in t_he NON- Besides, at any fixed+ 0,, the functionsf,(1,8; 6),k
relativistic and relativistic approximations. One can find the_ . L .
-1,0,1,2,3,decrease monotonically with increasing)

results of such an analysis in the above—cite_d Iite_rature. OmT:'hus the radiation from the first harmonic has the tendency
ought o rgmark that the We”"‘”owr? relatlon_s n the .UI'to line up in the directiond=0,7 with increasing electron
trarelativistic cas¢10] are good approximations in the limits energy(B— 1). This behavior of the first harmonic radiation

v~ 9 and for6~ /2. For lower harmonicg5] a qualitative . . ) .
estimationd~ (3/7)'/3 for the maxima is known. As will be IS compIgthy_ opposite to that of the totaI_SR Intensity in the
L ultrarelativistic case. As was already said in the preceding
seen below such an estimation holds true fe¢r1 only. . o )
section, the latter radiation tends to be concentrated in the

Moreover, we are going to demonstrate below that ther%rbital plane. All the functions given in Eg20) have finite

exist several important peculiarities of the angular behaViofimits as 8 approaches 1. Figure 4 presents the plots of par-
of SR harmonics which are not described by the asymptotic ' =

formulas. ]Eiculgr i:ases of these functions, naméjyfor 8=0, andfy
or B=1.

A. First harmonic radiation

The angular distribution of SR from the first harmonic B. Higher harmonic radiation

(v=1) is distinctly different from that of the higher harmon-  To study the angular dependence of higher harmonic
ics (v=2). Previously it was known thata) the first har- (> 1) radiation, we have to analyze the angular dependence
monic alone contributes essentially to the radiation in theof the functionsf,(v,3; ) for v>1.

directions#=0,; (b) in the nonrelativistic casg3~ 0), the First of all, one has to remark that all the functions
radiation is maximal exactly in these directions. f (v, B;6), v>1 vanish at9=0,7. Thus, they have the men-
Let us consider Eqg3) for the first harmonic: tioned absolute minima in directions parallel and antiparallel
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8o to the direction of the magnetic guide field. By virtue of Eq.
(4) the functionsfy(v,B;6),s=0,2,3 have two symmetric
maxima at the points

0i(B) =72+ 8v,B), s$=0,2,3. (22

The functionsf,,(v, 8; §) have maxima at the points

0:1(B) = 72+ &(v, ). (23)

The functions §(v,B),k=0,1,2,3, present deviations
from the orbit plane of the Sl-intensity maxima for each
harmonicy, for a giveng, and for a given polarization com-
ponent. All §(»,8),k=0,1,2,3, arencreasing functions of
B for any givenv, and for any giverd they are decreasing
functions ofv. At the same time,

0= §(v,B) <ml2, k=0,1,2,3 (24)
and

lim 8(v,8) = 8(r,1) = & < w2, k=0,1,2,3. (25)
p—1

The quantitiess, are maxima forg (v, B) at fixedk, v.

Thus, for each harmoni@ > 1) and for each polarization
component, the angular distribution of the SR intensity has
its own maximum. For a given harmonic the angle of maxi-
mum emission of any polarization component recedes away
from the orbit plane with increasing electron velocity, fol-
lowing a locus as shown in Fig. 5 that ends whgrel. The
end point of the locus tends to lie closer to the orbital plane
as the harmonic number increases. As the electron energy
increases its radiation effectively is emitted by higher and
higher harmonics, so that in the extreme relativistic limit the
sum over all the harmonic intensities will closely resemble
the integrated intensity which is concentrated at the orbital
plane, as given by the well-known asymptotic formulas.
Therefore, as in the case=1, the spectral SR intensities for
v>1 have the tendency to deconcentration from the orbit

0.8 0.85 0.9 0.95 1 plane with increasing particle energy.
Below, we represent the behavior of all the functions
501 % v=2 &(v, B). These results were obtained by applying both ana-
lytical and numerical methods.
40 v3 We begin by considering the intensity polarized in the
M orbit plane. The extremum of the functidn(v, 8; 6) with

respect to the argumernt is determined by the equation

30
__/——/ df,/d#=0 which has the form
20 ’—T’/ 2J/(2)3)(z)B cog6) =0,

v=50 v=10

10

z=vB sin(6) = vB cod 5,(vB)] < v.

Besides the obvious solutiof= /2 [that is, 5,=0, see Eq.
(22)], this equation may have solutions that are defined by
the following condition:

2
J(2)=0= (”? - 1>JV(Z) Ly, (26)
Z

FIG. 5. Anglesé(v,B) of maximum emission plotted against . o . _
normalized electron velocitys, for different polarization compo- Studying the latter conditiotin particular, numerically for
nentsk=0,1,2,3 atharmonic numberg=1, 10, 50. B<pj ), we may see that
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52(V=B):01 B<Bgl

where 3; is a root of the transcendental equation

v(1-p%3,(vB) - BI,(vB) = 0.

The functionJ;(z) does not have any roots within the inter-
val 0<z<w.

Similar consideration applied to the functidg(v, 3; 6)
leads us to the following result:

50(1/13):01 B<,351
where g is a root of the transcendental equation
_—

23,(v B) =LA (1-B2-4+v(1-BI] (v B).
(29)

The conditionB=<1 implies thatgg and g8 are unique.
The following inequality holds true:

Bo < Ba- (29)

Since the Lorentz factor is by definition a function gf see

Eg. (1), the extremal values g8, correspond to the critical
values of the Lorentz factoy, for the k component of po-
larization,

(27)

%=1 (BT

In particular, the critical valuesg and y; of the Lorentz
factor can be found from the asymptotic expressions at
much greater than 1:

%z(l)ua y5z<1)2/3 s
=h) a

1673

1/4
—,_} ~0.9382.
I%(1/3)\3

ay=32,~ 0.7332, a,= [

(30)
Herez, is a root of the transcendental equation

329K213(29) = Ky/3(29) =0, 2y~ 0.2444,

whereK ,(x) are the Macdonald functions.
For B> g, the functiondy(v, B) is defined as a solution
of the transcendental equation

2 J,(vB cos &) = {11 - B%+ (1 + B2)sir? &)
+1[1- B2+ (L+BDsin? 5,2 4}
X J!(vfB cos &) B cos &. (31

[One can see that E(RS) is a particular case of E¢31) at
80=0.] Here &y(v,B) is a monotonically increasing function
of B for each giverw. The maximum values of &y(v,B) is

a solution of Eq.(31) for B=1. There is the asymptoti@t
v>1) expression

b 1/3
~(—°> . by=3p,~ 0.3066, (32)
14

wherep, is a root of the transcendental equation

PHYSICAL REVIEW E 69, 046502(2004)

6poK2/3(Po) — K1/3(Po) =0, po = 0.1022. (33

The expressioli32) coincides with the qualitative estima-
tion presented in Ref5]. The latter fact indicates that such
an estimation holds true far>1 only.

For B> B3, the functiond,(v,B) has the form

9,(v,B) = arccos$pB,/p), B e (B31). (34)

Therefore, the maximum valu& of &,(v,B) at the pointg
=1is
(395

According to Eq.(30), we have the asymptoti@t v>1)
expression

, = J,(v,1) = arccospy.

8, = 1lv3, (36)

where the emission angt® is expressed in radians and is
the critical value of the Lorentz factor for the 2-component
of polarization.

Turning to the 1- and 3-components of polarization, the
functionsé;(v, 8) and &5(v, B) behave similar ta5,(v, 8) and
S,(v, B); namely, 81(v,B) and 8;(v,B) are defined as solu-
tions of the transcendental equations

(vsin 8, -1 -vp? sin 8, cos 6,)J,(vB cos &;)

=J;(vB cos ) B(1 - v sin §y)sin 8, cos ;. (37)
and
J/(vB cos 83) v Sirf 8; cos 8;=J,(vB cosdy), (38)

respectively. For each given these functions are bounded
and monotonically increasing functions gfe [0, 1],

arcsir(1/v) = 5,(v,0) < 8,(v,B) < 6, = 51(v, 1),

arcsif1iv) = 85(1,0) < 8(1,B) < &= 83(1,1). (39)

For each giveng, these functions decrease monotonically
with increasingy.
At v>1 we get the following asymptotic expressions:

b 1/3 1/3
5{-v(—1> , by=3p;~0.3933, &~ Q)
14 14

(40)

wherea, is defined by Eq(30), andp;=0.13114 is aroot
of the transcendental equation

(3p1— DKy5(pa) + 3p1Kzs(py) = 0. (41)
The following inequalities hold true:
53(7}13) > 51(V!B) > 5O(V1ﬂ) = 52(V1B)- (42)

The threshold values}, v5 and the extremal values" for
somev are given in Tables | and Il
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TABLE I. The critical valuesyp, y; of the Lorentz factor.

v 2 3 4 5 6 7 10 15 20 25 30 35 40 45 50 100 200 300 400 500

v 1.00 1.22 1.40 154 1.67 1.79 2.08 246 2.75 3.00 3.21 340 358 374 388 498 635 7.31 807 870
v, 159 210 255 297 3.36 3.73 4.75 6.25 7.59 8.82 9.98 11.07 12.10 13.10 14.06 22.38 35.58 46.66 56.54 65.63

Figure 5 shows how the polarization maxima move away |
from the orbital plane for all harmonics as the velocity of the
radiating electron increases towargls 1. These loci become
shorter as the harmonic number increases, confining the
maxima closer to the orbital plane.

Note in Fig. 6 the unexpected small dip in the
2-component of polarization at an anglemf2, correspond-
ing to a direction lying in the orbital plane, which is present
even at the highest harmonic number of 500 that we have
calculated. This minimum has remained unsuspected until
now, the asymptotic solutions having failed to reveal it. The
maxima lie ever closer to the orbital plane as the harmonic
number increases. At ultrarelativistic electron energies, very
high harmonics make the most significant contribution to the
observed intensity. Thus in the high energy limit the polar-
ization maxima will approach each other very closely from
opposite sides of the orbital plane, in agreement with the
well-known result[5,8] that the integral intensity has its
maximum in the orbital plane at high energy. However this
dip should be measurable at electron energies lower than
10 MeV where the critical harmonic, and hence the har-
monic number of any intense frequency component, is in the
vicinity of the 500th harmonic which is the highest harmonic
that we have listed in Table II.

Integrating a spectral SR intensity kfpolarization com-
ponent over all the directions, one can obtain the so called
total spectral SR intensity dé-polarization component. De-
noting viary ®{(8) the harmonic for which the latter quantity
is maximal, and considering dependence of this harmonic,
one can see thaf{®{() is a step function which breaks in
curve at the pointg,(n), n=1,2,--, and is constant on each
interval [ B(n), B(n+1)]. In the papef11], positions of the
points B,(n) were studied in detail. One can use these results
to get additional information about the behavior of the func-
tions &y(v, B) and 5,(v, B). In particular, one can derive that
the functiondy(v, B) is not zero forv=1{"*{B), whereas the
function &,(v, B) equals zero fow=15(B).

1

IV. SUMMARY

We have analyzed the angular behavior of SR harmonics
in the framework of classical theory. The main physical de-
ductions are the following.

It was demonstrated that for any given harmonic the
maximum of the radiation does not have any tendency to : = : - T
concentrate itself on the orbit plane with increasing particle 0 w/4 w2 Ini4
energy. On the contrary, in this case there is a completely FG. 6. Spectral intensity functioni(»,1;6) at fixed electron
opposite behavior: the maximum recedes from the orbitelocity (8=1) of the different polarization component&
plane. Moreover, with infinite increase of the particle energy=0,1,2,3 forharmonic numbers=1,2,3,4,5, 1(plotted against
the maximum of the radiation for each harmonic tends to itolar angle of emission (radian$ relative to the direction of the
own finite limiting value, which characterizes the harmonicmagnetic guide field.
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TABLE Il. The extremal valueéf of maximum emission angles at fixédv (in deg.

v 2 3 4 5 6 7 10 15 20 25 30 35 40 45 50 100 200 300 400 500

6y 45.50 36.22 31.29 28.11 25.84 24.10 20.66 17.48 15.59 14.30 12.34 12.59 11.98 11.47 11.03 8.60 6.74 5.86 5.31 4.92
6, 45.88 36.83 32.02 28.91 26.68 24.98 21.57 18.39 16.48 15.16 14.18 13.41 12.77 12.24 11.79 9.24 7.28 6.34 5.75 5.33
5, 38.84 28.44 23.06 19.67 17.30 15.54 12.14 9.20 7.57 651 575 518 4.74 438 4.08 256 1.61 1.23 1.01 0.87
Sy 49.83 41.09 36.29 33.11 30.80 29.00 25.34 21.83 19.69 18.19 17.06 16.16 15.43 14.81 14.28 11.26 8.90 7.76 7.04 6.53

deconcentration. At a fixed particle energy this deconcentraess, the substantial deviation of the maximum angle of the

tion decreases monotonically with increasing the harmonisynchrotron radiation from the electron orbital plane, analo-

number. This statement holds true for any polarization comgous to the result obtained in the present paper, has been

ponent. observed in tokamak plasmas at some special conditions
Results obtained here can be considered to be applied iisee, e.g., Ref[14]). To perform detailed comparison of

space[12] and laboratonyf13] plasmas. Especially these ef- these experimental results with our predictions is a goal of

fects can be important for runaway electron dischafd@s  future investigations.

where electron velocities are relativistic or nonrelativistic

and electron radiation lies mainly in the electron cyclotron

frequency’s region. Results of the present paper can be also ACKNOWLEDGMENTS
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