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The detailed analysis of angular dependence of the synchrotron radiation(SR) is presented. Angular distri-
butions of linear and circular polarization integrated over all harmonics, well known for relativistic electron
energies, are extended to include radiation from electrons that are not fully relativistic. In particular, we analyze
the angular dependence of the integral SR intensity and peculiarities of the angular dependence of the first
harmonics SR. Studying spectral SR intensities, we have discovered their unexpected angular behavior, com-
pletely different from that of the integral SR intensity; namely, for any given synchrotron frequency, maxima
of the spectral SR intensities recede from the orbit plane with increasing particle energy. Thus, in contrast with
the integral SR intensity, the spectral ones have the tendency to deconcentrate themselves on the orbit plane.
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I. INTRODUCTION

At present the theory of synchrotron radiation(SR) is well
developed and its predictions are in good agreement with
experiment. General expressions for the spectral SR intensity
(SR intensity for a fixed radiation frequency) were obtained
in the framework of classical electrodynamics as far back as
in Ref. [1], and since that time were represented in numerous
books(e.g., Ref.[2], p. 20; Ref.[3], Sec. 10; Ref.[4], p. 31)
and textbooks(e.g., Ref.[5], p. 676; Refs.[6], p. 296;[7,9],
p. 21).

We recall that the SR is created by charged particles,
which are moving with velocitiesy along circles of radiusR
in a uniform magnetic fieldH,

R=
bE

eH
=

m0c
2

eH
Îg2 − 1, b =

y

c
,

g = s1 − b2d−1/2 =
E

m0c
2 . 1. s1d

HereE is the particle energy,e is the particle charge, andm0
the rest mass of the particle. The radiation frequenciesvn

=nv0,n=1,2,¯ , are multiples of the synchrotron fre-
quencyv0=ceH/E. The spectral SR intensity(SR intensity
for a fixed radiation frequency) has a maximum for harmon-
ics with n,g3. Two limiting cases, the nonrelativisticsb

!1,E.m0c
2d and the relativistic limitssb,1,E@m0c

2d,
are of particular interest. In the nonrelativistic case, only the
first harmonicsv1=v is effectively emitted. The SR intensity
has a maximum in the direction of the magnetic field. In the
relativistic case, the integral SR intensity(spectral SR inten-
sity summed over the spectrum) is concentrated in the orbital
plane within a small intervalDu,1/g!1 of the angleu. We
have chosenu to be measured from the direction of the mag-
netic guide field which is normal to the orbital plane. Thus,
as the electron energy increases, the integral SR intensity
tends to be concentrated in the orbit plane. Any polarization
component of the integral SR intensity has the same behav-
ior. These results were first derived in the framework of clas-
sical theory. Consideration in the framework of quantum
theory does not change essentially results of the classical
analysis, since quantum corrections are small[2,3].

In this work we examine the angular dependence of po-
larization of the spectral and integral intensities of synchro-
tron radiation. Some years ago one of the authors, V.G.B.,
collaborated with the authors of Ref.[2] on their Chap. 1,
where the present Eqs.(19) and (14) appeared. These equa-
tions give, respectively, the angular distance out of the or-
bital plane of the maximum emission of the component of
synchrotron radiation that is linearly polarized orthogonal to
the orbital plane, and the angular distances from the orbital
plane of the two components of circularly polarized radia-
tion, in the relativistic limit whereb, the electron speed nor-
malized to the speed of light, approaches the value of unity.
In the present work this behavior is described for values ofb
intermediate between zero and unity. These results are sig-*Electronic address: gitman@fma.if.usp.br
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nificant for characterizing radiation by keV electrons in hot
magnetized plasmas, for example.

In Sec. II we analyze in detail angular dependence of the
integral SR intensity. In Sec. III we study peculiarities of the
angular dependence of the first harmonics SR. Studying
spectral SR intensities(see Sec. III), we have discovered
their unexpected angular behavior, completely different from
that of the integral SR intensity; namely, one can see that for
any given synchrotron frequency, maxima of the spectral SR
intensities recede from the orbit plane with increasing par-
ticle energy. There exist limiting angles(at b→1) for the
maxima, which depend on the synchrotron frequency. Thus,
in contrast with the integral SR intensity, the spectral ones
have the tendency to deconcentrate themselves on the orbit
plane. The analysis is done in the framework of classical
theory, but as was already mentioned above, quantum correc-
tions cannot change the results essentially. Below, some ba-
sic expressions(known from the above cited sources) are
given; they are necessary for the presentation of the above
results.

Using the notation of Ref.[2], we denote by index 1 the
direction of propagation of the radiated photon, or the direc-
tion of the Poynting vector in the classical case. Indices 2,3
denote mutually orthogonal axes lying in a plane orthogonal
to the propagation direction. Extremely relativistic electrons
radiate synchrotron radiation mainly close to the direction of
their instantaneous orbital velocity, so that the 3-axis can be
chosen so as nearly to coincide with the direction of the
magnetic guide field, traditionally called thep-direction,
while the 2-axis will nearly coincide with the direction of
centripetal acceleration, ors-direction. Circular polarization
vectors will lie along the positive and negative 1-axes, while
transverse linear polarization components lie along the 2-
and 3-axes. In the SR theory one introduces polarization
componentsWi, i =0, ±1,2,3 of theintegral SR intensity.
HereW±1 are the integral SR intensities of the rights+1d and
the left s−1d circular polarization components, respectively,
whereasW2 andW3 are the so calleds and p linear polar-
ization components. The total integral SR intensityW0 is
defined asW0=W1+W−1=W2+W3. In the framework of the
classical theory of SR one can find

Wi = V0Fisbd, V0 =
ce2b4

R2 =
e4H2b2s1 − b2d

m0
2c3 ,

Fisbd =E
0

p

Fisb,udsin udu, Fisb,ud = o
n=1

`

f isn,b;ud,

f0sn,b;ud = f−1sn,b;ud + f1sn,b;ud = f2sn,b;ud + f3sn,b;ud.

s2d

Here u is the angle between thez axis and the radiation
direction. The particle orbit is placed in the planez=0, which
corresponds tou=p /2. In some works a different set of
angles is used for the SR description. In particular, thez axis
is selected to coincide with the direction of the particle’s
instantaneous velocity. The relation between the latter refer-
ence frame and the one used in the present paper is well

known [see, e.g., Ref.[2], p. 35, Eqs.(6.6) and (6.7)].
The sum overn is just the sum over the spectrum, such

that the expressions inside the sum represent spectral distri-
butions. The functionsf isn ,b ;ud have the form

f71sn,b;ud =
n2

2
FJn8szd 7

cosu

b sin u
JnszdG2

, z= nb sin u,

f2sn,b;ud = n2Jv8
2szd, f3sn,b;ud =

n2 cos2 u

b2 sin2 u
Jn

2szd. s3d

Here Jnsxd are Bessel functions of integer indices. The fol-
lowing simple properties hold true:

fksn,b;ud = fksn,b;p − ud, k = 0,2,3;

f−1sn,b;ud = f1sn,b;p − ud. s4d

Thus, it is enough to study the functionsfksn ,b ;ud , k
=0,2,3, at theinterval 0øuøp /2 only, and between the
functions f±1 it is enough to studyf1 only.

Exact analytic expressions for the functionsFksb ,ud, k
=0,2,3,have the following form[2–9]:

F2sb,ud =
7 − 3«

16«5/2, « = 1 −b2sin2u,
1

g2 ø « , 1,

F3sb,ud =
sg2« − 1ds5 − «d
16sg2 − 1d«7/2 , s5d

F0sb,ud =
s3 − 4g2d«2 + 6s2g2 − 1d« − 5

16sg2 − 1d«7/2 .

Expressions for the functionsF±1 can be found in the form

F±1sb,ud =
1

2
F0sb,ud ± Csb sin udcosu,

Csxd =
1

2x

d

dxon=1

`

nJn
2snxd. s6d

It remains the case that no closed analytic expression for
the function Csxd has been found. We have therefore re-
sorted to numerical computation where it occurs in our work.
One can find by taking first and second derivatives that for
any fixedb all the functionsFisb ,ud have an extremum at
u=0. Moreover, the extremal values of these functions do
not depend onb,

F−1sb,0d = 0,2F0sb,0d = 2F1sb,0d

= 4F2sb,0d = 4F3sb,0d = 1. s7d

The pointu=p /2 provides an extremum for the functionsFk,
k=0,2,3only. Here we have

F0sb,p/2d = F2sb,p/2d = 2F±1sb,p/2d =
1

16
g3s7g2 − 3d,
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F3sb,p/2d = 0. s8d

Therefore, forF3 the pointu=p /2 is an absolute minimum.
For any fixedb the function F2sb ,ud is a monotonically
increasing function ofu on the interval 0øuøp /2. Thus,
u=0 is an absolute minimum andu=p /2 is an absolute
maximum of this function. The maximum of the functionF2
increases asE5 with increasing particle energyE.

II. ANGULAR DEPENDENCE OF INTEGRAL
SR INTENSITY

It is known that in the nonrelativistic casesb!1d the
point u=0 is a maximum for the functionsF0,F1, andF3. In
the ultrarelativistic casesg@1d the maxima of these func-
tions are shifted into the direction of the pointu=p /2. How-
ever the behavior of these maxima in the region of varying
normalized speedb and normalized energyg of the radiating
particle has not been analyzed before in detail. We will give
such an analysis in what follows.

For the particle energy less than the lower critical value,
gøg0

s1d , sbøb0
s1dd, where

g0
s1d = Î7/6< 1.0801, b0

s1d = 1/Î7 < 0.378, s9d

the integral intensityF0 and circularly polarized components
F1 are monotonically decreasing functions ofu sF0 on the
interval 0øuøp /2 andF1 on the interval 0øuøpd. We
recall that the functionF0 characterizes the integral intensity
and the functionF1 characterizes the circularly polarized
component of the intensity, see Eqs.s2d. Thus, atu=0 these
functions have an absolute maximum. The integral intensity
F0 and circularly polarized componentsF1 have their abso-
lute minima at u=p /2 and u=p, respectively. Besides,
F1sb ,pd=0. In the particle energy interval between the two
critical valuesg0

s1d,g,g0
s2d, sb0

s1d,b,b0
s2dd, where

g0
s2d =

Î3 + 3Î2

5
< 1.1949,

b0
s2d =Î2

3
sÎ6 − 2d < 0.5474, s10d

the pointsu=0,p /2 are minima forF0, and the pointu
=u0sbd,

sin2u0sbd =
6g2s1 − 3g2d + 2g2Î15s15g4 − 22g2 + 9d

3s4g2 − 3dsg2 − 1d
,

0 , u0sbd , p/2 s11d

provides a maximum forF0. For energies greater than the
upper critical valueg0

s2d,g, sb0
s2d,b,1d, the functionF0

has an absolute maximum at the pointu=p /2.
Denoting viau0

smdsbd all the maximum points ofF0, we
summarize as follows(see Fig. 1):

u0
smdsbd = 50, b ø b0

s1d

u0sbd, b0
s1d , b , b0

s2d

p/2, b0
s2d ø b , 1.

s12d

Turning to the integral intensity of the circular polariza-
tion, we find that for any givenbP sb0

s1d ,1d, the functionF1

has its maximum at the pointu=u1sbd, 0,u1sbd,p /2. De-
noting via u1

smdsbd all the maximum points ofF1, we may
write

u1
smdsbd = H0, b ø b0

s1d

u1sbd, b0
s1d , b , 1.

s13d

At the moment, there is no analytical expression foru1sbd
similar to Eq.s11d for u0sbd. However, one can see that the
function u1sbd is a monotonically increasing function ofb

P fb0
s1d ,1g. In the limit of b approaching 1 we recover the

asymptotic form that was given in Ref.f2g,

u1sbd < p/2 − a1/g, b → 1, s14d

wherea1<0.2672 is aroot of the equationssee Ref.f2gd

5pa1s5 + 12a1
2dÎ3 + 64s5a1

2 − 1dÎ1 + a1
2 = 0. s15d

When we generalize to the region whereb is increasing to-
wards unity, we get the plot of the functionu1

smdsbd as shown
in Fig. 2. In the case of linear polarization, where the nor-
malized velocityb and energy of the radiating electrong are
less than the critical valuesb3 andg3, respectively, where

b3 =
2

Î15
< 0.5164, g3 =Î15

11
< 1.1678, s16d

the integral intensityF3 is a monotonically decreasing on the
interval 0øuøp /2 function. The pointu=0 provides the
absolute maximum for this function.

FIG. 1. The maximum pointsu0
smdsbd of integral intensityF0

plotted against normalized electron velocityb.

FIG. 2. The maximum pointsu1
smdsbd of circularly polarized

componentsF1 plotted against normalized electron velocityb.
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For values of normalized velocityb greater than the criti-
cal valueb3, that is, for 1.b.b3, sg.g3d, the pointsu
=0 andu=u3sbd provide the minimum and the maximum,
respectively, for the integral intensityF3,

sin2u3sbd =
Î5s125g4 − 34g2 + 5d − 19g2 − 5

6sg2 − 1d
,

0 , u3sbd , p/2. s17d

Denoting the angular position of all the maxima of the func-
tion F3 by u3

smdsbd (Fig. 3), we may write

u3
smdsbd = H0, b ø b3

u3sbd, b3 , b , 1.
s18d

For b→1 the following asymptotic expression previously
given in Ref.f2g holds true:

u3
smd < p/2 −

1

g
Î2

5
. s19d

III. ANGULAR DEPENDENCE OF SPECTRAL
SR INTENSITY

The behavior of some spectral components of SR inten-
sity has been studied in the past by others both in the non-
relativistic and relativistic approximations. One can find the
results of such an analysis in the above-cited literature. One
ought to remark that the well-known relations in the ul-
trarelativistic case[10] are good approximations in the limits
n,g3 and foru,p /2. For lower harmonics[5] a qualitative
estimationu,s3/gd1/3 for the maxima is known. As will be
seen below such an estimation holds true forn@1 only.
Moreover, we are going to demonstrate below that there
exist several important peculiarities of the angular behavior
of SR harmonics which are not described by the asymptotic
formulas.

A. First harmonic radiation

The angular distribution of SR from the first harmonic
sn=1d is distinctly different from that of the higher harmon-
ics snù2d. Previously it was known that(a) the first har-
monic alone contributes essentially to the radiation in the
directionsu=0,p; (b) in the nonrelativistic casesb,0d, the
radiation is maximal exactly in these directions.

Let us consider Eqs.(3) for the first harmonic:

f71s1,b;ud =
1

2
FJ18szd 7

cosu

z
J1szdG2

, z= b sin u,

f2s1,b;ud = J18
2szd, f3s1,b;ud =

cos2 u

z2 J1
2szd. s20d

In the nonrelativistic casesb=0d we get

f71s1,0;ud =
1

8
s1 7 cosud2, f2s1,0;ud =

1

4
,

f3s1,0;ud =
cos2 u

4
. s21d

Thus, in this case, the radiation componentsW0 andW3 peak
at u=0,p, whereasW2 does not depend onu at all. Further
analyzing the expressions(20), one can see that the functions
fks1,b ;ud, k=0,1,2,3,peak atu=0 for any b (including
b→1). Thus, the corresponding radiation componentsWk
are maximal atu=0 for anyb.

Besides, at any fixeduÞ0,p, the functionsfks1,b ;ud ,k
=−1,0,1,2,3,decrease monotonically with increasingb.
Thus, the radiation from the first harmonic has the tendency
to line up in the directionu=0,p with increasing electron
energysb→1d. This behavior of the first harmonic radiation
is completely opposite to that of the total SR intensity in the
ultrarelativistic case. As was already said in the preceding
section, the latter radiation tends to be concentrated in the
orbital plane. All the functions given in Eq.(20) have finite
limits asb approaches 1. Figure 4 presents the plots of par-

ticular cases of these functions, namelyf̄ k for b=0, and fk
for b=1.

B. Higher harmonic radiation

To study the angular dependence of higher harmonic
sn.1d radiation, we have to analyze the angular dependence
of the functionsfksn ,b ;ud for n.1.

First of all, one has to remark that all the functions
fksn ,b ;ud, n.1 vanish atu=0,p. Thus, they have the men-
tioned absolute minima in directions parallel and antiparallel

FIG. 3. The maximum pointsu3
smdsbd of p linear polarization

componentF3 plotted against normalized electron velocityb.

FIG. 4. The spectral intensity functionsf̄ k= fks1,b=0;ud and
fk= fks1,b=1;ud at two extremal values of electron velocity(b=0
and b=1) plotted against polar angle of emissionu (radians), for
the different polarization componentsk=0,1,2,3 atharmonic num-
ber n=1.
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to the direction of the magnetic guide field. By virtue of Eq.
(4) the functionsfssn ,b ;ud ,s=0,2,3 have two symmetric
maxima at the points

us
nsbd = p/2 7 dssn,bd, s= 0,2,3. s22d

The functionsf±1sn ,b ;ud have maxima at the points

u±1
n sbd = p/2 7 d1sn,bd. s23d

The functions dksn ,bd ,k=0,1,2,3, present deviations
from the orbit plane of the SI-intensity maxima for each
harmonicn, for a givenb, and for a given polarization com-
ponent. All dksn ,bd ,k=0,1,2,3, areincreasing functions of
b for any givenn, and for any givenb they are decreasing
functions ofn. At the same time,

0 ø dksn,bd , p/2, k = 0,1,2,3 s24d

and

lim
b→1

dksn,bd = dksn,1d = dk
n , p/2, k = 0,1,2,3. s25d

The quantitiesdk
n are maxima fordksn ,bd at fixed k,n.

Thus, for each harmonicsn.1d and for each polarization
component, the angular distribution of the SR intensity has
its own maximum. For a given harmonic the angle of maxi-
mum emission of any polarization component recedes away
from the orbit plane with increasing electron velocity, fol-
lowing a locus as shown in Fig. 5 that ends whereb=1. The
end point of the locus tends to lie closer to the orbital plane
as the harmonic number increases. As the electron energy
increases its radiation effectively is emitted by higher and
higher harmonics, so that in the extreme relativistic limit the
sum over all the harmonic intensities will closely resemble
the integrated intensity which is concentrated at the orbital
plane, as given by the well-known asymptotic formulas.
Therefore, as in the casen=1, the spectral SR intensities for
n.1 have the tendency to deconcentration from the orbit
plane with increasing particle energy.

Below, we represent the behavior of all the functions
dksn ,bd. These results were obtained by applying both ana-
lytical and numerical methods.

We begin by considering the intensity polarized in the
orbit plane. The extremum of the functionf2sn ,b ;ud with
respect to the argumentu is determined by the equation
df2/du=0 which has the form

2Jv8szdJv9szdb cossud = 0,

z= nb sinsud = nb cosfd2snbdg , n.

Besides the obvious solutionu=p /2 fthat is,d2=0, see Eq.
s22dg, this equation may have solutions that are defined by
the following condition:

Jv9szd = 0 =Sn2

z2 − 1DJnszd −
1

z
Jn8szd. s26d

Studying the latter conditionsin particular, numerically for
b,b2

n d, we may see that

FIG. 5. Anglesdksn ,bd of maximum emission plotted against
normalized electron velocityb, for different polarization compo-
nentsk=0,1,2,3 atharmonic numbersn=1,10,50.
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d2sn,bd = 0, b , b2
n,

whereb2
n is a root of the transcendental equation

ns1 − b2dJnsnbd − bJn8snbd = 0. s27d

The functionJv8szd does not have any roots within the inter-
val 0,z,n.

Similar consideration applied to the functionf0sn ,b ;ud
leads us to the following result:

d0sn,bd = 0, b , b0
n,

whereb0
n is a root of the transcendental equation

2 Jnsn bd = bfÎn2 s1 − b2d2 − 4 +ns1 − b2dg Jn8sn bd.

s28d

The conditionbø1 implies thatb0
n and b2

n are unique.
The following inequality holds true:

b0
n , b2

n. s29d

Since the Lorentz factor is by definition a function ofb, see
Eq. s1d, the extremal values ofbk

n correspond to the critical
values of the Lorentz factorgk

n for the k component of po-
larization,

gk
n = f1 − sbk

nd2g−1/2.

In particular, the critical valuesg0
n and g2

n of the Lorentz
factor can be found from the asymptotic expressions atn
much greater than 1:

g0
n < S n

a0
D1/3

, g2
n < S n

a2
D2/3

, n @ 1,

a0 = 3z0 < 0.7332, a2 = F 16p3

G6s1/3dÎ3
G1/4

< 0.9382.

s30d

Herez0 is a root of the transcendental equation

3z0K2/3sz0d − K1/3sz0d = 0, z0 < 0.2444,

whereKmsxd are the Macdonald functions.
For b.b0

n, the functiond0sn ,bd is defined as a solution
of the transcendental equation

2 Jnsnb cosd0d = hnf1 − b2 + s1 + b2dsin2 d0g

+ În2f1 − b2 + s1 + b2dsin2 d0g2 − 4j

3Jn8snb cosd0db cosd0. s31d

fOne can see that Eq.s28d is a particular case of Eq.s31d at
d0=0.g Hered0sn ,bd is a monotonically increasing function
of b for each givenn. The maximum valued0

n of d0sn ,bd is
a solution of Eq.s31d for b=1. There is the asymptoticsat
n@1d expression

d0
n < Sb0

n
D1/3

, b0 = 3p0 < 0.3066, s32d

wherep0 is a root of the transcendental equation

6p0K2/3sp0d − K1/3sp0d = 0, p0 < 0.1022. s33d

The expression(32) coincides with the qualitative estima-
tion presented in Ref.[5]. The latter fact indicates that such
an estimation holds true forn@1 only.

For b.b2
n, the functiond2sn ,bd has the form

d2sn,bd = arccossb2
n/bd, b P sb2

n,1d. s34d

Therefore, the maximum valued2
n of d2sn ,bd at the pointb

=1 is

d2
n = d2sn,1d = arccosb2

n. s35d

According to Eq.(30), we have the asymptotic(at n@1)
expression

d2
n < 1/g2

n, s36d

where the emission angled2
n is expressed in radians andg2

n is
the critical value of the Lorentz factor for the 2-component
of polarization.

Turning to the 1- and 3-components of polarization, the
functionsd1sn ,bd andd3sn ,bd behave similar tod0sn ,bd and
d2sn ,bd; namely,d1sn ,bd and d3sn ,bd are defined as solu-
tions of the transcendental equations

sn sin d1 − 1 −nb2 sin d1 cos2 d1dJnsnb cosd1d

= Jv8snb cosd1dbs1 − n sin d1dsin d1 cosd1 s37d

and

Jv8snb cosd3dnb sin2 d3 cosd3 = Jnsnb cosd3d, s38d

respectively. For each givenn, these functions are bounded
and monotonically increasing functions ofbP f0,1g,

arcsins1/nd = d1sn,0d ø d1sn,bd ø d1
n = d1sn,1d,

arcsins1/Înd = d3sn,0d ø d3sn,bd ø d3
n = d3sn,1d. s39d

For each givenb, these functions decrease monotonically
with increasingn.

At n@1 we get the following asymptotic expressions:

d1
n < Sb1

n
D1/3

, b1 = 3p1 < 0.3933, d3
n < Sa0

n
D1/3

,

s40d

wherea0 is defined by Eq.s30d, andp1<0.13114 is aroot
of the transcendental equation

s3p1 − 1dK1/3sp1d + 3p1K2/3sp1d = 0. s41d

The following inequalities hold true:

d3sn,bd . d1sn,bd . d0sn,bd ù d2sn,bd. s42d

The threshold valuesg0
n , g2

n and the extremal valuesd n
k for

somen are given in Tables I and II.
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Figure 5 shows how the polarization maxima move away
from the orbital plane for all harmonics as the velocity of the
radiating electron increases towardsb=1. These loci become
shorter as the harmonic number increases, confining the
maxima closer to the orbital plane.

Note in Fig. 6 the unexpected small dip in the
2-component of polarization at an angle ofp /2, correspond-
ing to a direction lying in the orbital plane, which is present
even at the highest harmonic number of 500 that we have
calculated. This minimum has remained unsuspected until
now, the asymptotic solutions having failed to reveal it. The
maxima lie ever closer to the orbital plane as the harmonic
number increases. At ultrarelativistic electron energies, very
high harmonics make the most significant contribution to the
observed intensity. Thus in the high energy limit the polar-
ization maxima will approach each other very closely from
opposite sides of the orbital plane, in agreement with the
well-known result [5,8] that the integral intensity has its
maximum in the orbital plane at high energy. However this
dip should be measurable at electron energies lower than
10 MeV where the critical harmonic, and hence the har-
monic number of any intense frequency component, is in the
vicinity of the 500th harmonic which is the highest harmonic
that we have listed in Table II.

Integrating a spectral SR intensity ofk-polarization com-
ponent over all the directions, one can obtain the so called
total spectral SR intensity ofk-polarization component. De-
noting viank

maxsbd the harmonic for which the latter quantity
is maximal, and consideringb dependence of this harmonic,
one can see thatnk

maxsbd is a step function which breaks in
curve at the pointsbksnd, n=1,2 ,̄ , and is constant on each
interval fbksnd ,bksn+1dg. In the paper[11], positions of the
pointsbksnd were studied in detail. One can use these results
to get additional information about the behavior of the func-
tions d0sn ,bd andd2sn ,bd. In particular, one can derive that
the functiond0sn ,bd is not zero forn=n0

maxsbd, whereas the
function d2sn ,bd equals zero forn=n2

maxsbd.

IV. SUMMARY

We have analyzed the angular behavior of SR harmonics
in the framework of classical theory. The main physical de-
ductions are the following.

It was demonstrated that for any given harmonic the
maximum of the radiation does not have any tendency to
concentrate itself on the orbit plane with increasing particle
energy. On the contrary, in this case there is a completely
opposite behavior: the maximum recedes from the orbit
plane. Moreover, with infinite increase of the particle energy
the maximum of the radiation for each harmonic tends to its
own finite limiting value, which characterizes the harmonic

TABLE I. The critical valuesg0
n, g2

n of the Lorentz factor.

n 2 3 4 5 6 7 10 15 20 25 30 35 40 45 50 100 200 300 400 500

g0
n 1.00 1.22 1.40 1.54 1.67 1.79 2.08 2.46 2.75 3.00 3.21 3.40 3.58 3.74 3.88 4.98 6.35 7.31 8.07 8.70

g2
n 1.59 2.10 2.55 2.97 3.36 3.73 4.75 6.25 7.59 8.82 9.98 11.07 12.10 13.10 14.06 22.38 35.58 46.66 56.54 65.63

FIG. 6. Spectral intensity functionsfksn ,1 ;ud at fixed electron
velocity (b=1) of the different polarization componentsk
=0,1,2,3 forharmonic numbersn=1,2,3,4,5,10plotted against
polar angle of emissionu (radians) relative to the direction of the
magnetic guide field.
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deconcentration. At a fixed particle energy this deconcentra-
tion decreases monotonically with increasing the harmonic
number. This statement holds true for any polarization com-
ponent.

Results obtained here can be considered to be applied in
space[12] and laboratory[13] plasmas. Especially these ef-
fects can be important for runaway electron discharges[12],
where electron velocities are relativistic or nonrelativistic
and electron radiation lies mainly in the electron cyclotron
frequency’s region. Results of the present paper can be also
applied for elaborating diagnostics of electron cyclotron
emission radiometry type, where detailed experimental
analysis of frequencies of particle radiation and its angular
distribution can be performed. Of course, in plasmas collec-
tive effects are strong, and the problem of using of present
results can be considered in future investigations. Neverthe-

less, the substantial deviation of the maximum angle of the
synchrotron radiation from the electron orbital plane, analo-
gous to the result obtained in the present paper, has been
observed in tokamak plasmas at some special conditions
(see, e.g., Ref.[14]). To perform detailed comparison of
these experimental results with our predictions is a goal of
future investigations.

ACKNOWLEDGMENTS

The authors(V.G.B., V.B.T., and A.T.J.) thank RFBR
(Grant No. 03-02-17615 and President grant of Russia, Grant
No. 1743.2003.2) and Minobrazovanie RF for partial sup-
port. D.M.G, and J.A.J are grateful to FAPESP for support;
D.M.G also thanks CNPq for permanent support.

[1] G. A. Schott,Electromagnetic Radiation and the Mechanical
Reactions Arising from it(Cambridge University Press, Cam-
bridge, 1912).

[2] A. A. Sokolov and I. M. Ternov,Synchrotron Radiation
(AkademieVerlag, Berlin, 1968).

[3] A. A. Sokolov and I. M. Ternov,Radiation from Relativistic
Electrons(American Institute of Physics, New York, 1986).

[4] Synchrotron Radiation Theory and its Development, edited by
V. A. Bordovitsyn (World Scientific, Singapore, 1999).

[5] J. D. Jackson,Classical Electrodynamics(Wiley, New York,
1975).

[6] L. Eyges,Classical Electromagnetic Field(Addison-Wesley,
New York, 1972).

[7] I. M. Ternov, V. V. Mihailin, and V. R. Khalilov,Synhrotron
Radiation and Its Application(Harwood Academic, Chur,
1985).

[8] A. Hofmann, inProceedings of the Thirtieth Scottish Univer-
sities’ Summer School in Physics, 1985, edited by G. N.
Greaves and I. H. Munro(Edinburgh University Press, Bristol,
1989).

[9] I. M. Ternov and V. V. Mihailin,Synhrotron Radiation. Theory
and Experiment(Energoatomizdat, Moskva, 1986).

[10] J. Schwinger, Phys. Rev.75, 1912(1949).
[11] V. G. Bagrov, G. F. Kopytov, G. K. Rasina, and V. B.

Tlyachev, Tomsk Scientific Center, Siberian Branch of the
Russian Academy of Sciences, Report No. N 7927-B85(un-
published).

[12] A. V. Gurevich, G. M. Milikh, and R. Rousseldupre, Phys.
Lett. A 165, 463 (1992).

[13] Nucl. Fusion 39, 2251(1999).
[14] R. Jaspers, N. J. L. Cardozo, F. C. Schuller, K. H. Finken, T.

Grewe, and G. Mank, Nucl. Fusion36, 367 (1996).

TABLE II. The extremal valuesdn
k of maximum emission angles at fixedk,n (in deg).

n 2 3 4 5 6 7 10 15 20 25 30 35 40 45 50 100 200 300 400 500

d0
n 45.50 36.22 31.29 28.11 25.84 24.10 20.66 17.48 15.59 14.30 12.34 12.59 11.98 11.47 11.03 8.60 6.74 5.86 5.31 4.92

d1
n 45.88 36.83 32.02 28.91 26.68 24.98 21.57 18.39 16.48 15.16 14.18 13.41 12.77 12.24 11.79 9.24 7.28 6.34 5.75 5.33

d2
n 38.84 28.44 23.06 19.67 17.30 15.54 12.14 9.20 7.57 6.51 5.75 5.18 4.74 4.38 4.08 2.56 1.61 1.23 1.01 0.87

d3
n 49.83 41.09 36.29 33.11 30.80 29.00 25.34 21.83 19.69 18.19 17.06 16.16 15.43 14.81 14.28 11.26 8.90 7.76 7.04 6.53

BAGROV et al. PHYSICAL REVIEW E 69, 046502(2004)

046502-8


